Eigenvalue approximation by the finite element method
نویسندگان
چکیده
منابع مشابه
Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters
This paper analyses an adaptive nonconforming finite element method for eigenvalue clusters of self-adjoint operators and proves optimal convergence rates (with respect to the concept of nonlinear approximation classes) for the approximation of the invariant subspace spanned by the eigenfunctions of the eigenvalue cluster. Applications include eigenvalues of the Laplacian and of the Stokes system.
متن کاملFinite element approximation of a non-Lipschitz nonlinear eigenvalue problem
Given p e (0, 1), we consider the following problem find u # 0, such that AM = [uf+ =u p in a u = 0 on dO , where Q, er IR is a C 1 domain We prove a near optimal L error bound for the Standard continuous piecewise line ar Galerkin finite element approximation withan acute triangulation In addition we analyse a more practical approximation us ing numerical intégration on the nonlinear term, pro...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملAn Iterative Finite Element Method for Elliptic Eigenvalue Problems
We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1973
ISSN: 0001-8708
DOI: 10.1016/0001-8708(73)90113-8